Введение
Математика есть самая удивительная и загадочная сфера деятельности человеческой мысли. Развитие области фундаментальных знаний исторически неотъемлемо связано с развитием человеческого социума. Это значит, что основные грандиозные вехи развития этой изящной науки связаны с жизнью, без сомнения, гениальных умов человечества. В пантеон бессмертия выписаны имена математиков, чьи титанические труды обогатили людские знания всесущей.
Настоящая работа посвящена освещению биографии великого Леонарда Эйлера и его трудов, привнесших огромный вклад в развитие математики, и, прежде всего, в приложении её к практической деятельности.
Необыкновенная интуиция, точный и искусный ум вели Леонарда Эйлера к изящным и удивительным открытиям, ныне кажущиеся столь простыми и естественными, что не вызывают никакого сомнения в их неприкасаемой правоте. В настоящее время многочисленные отрасли математики, механики, физики, астрономии до сих пор используют научные достижения трудов Эйлера, признанные, как основополагающие.
В первой главе представлено описание основных моментов жизни, повлиявших на творчество и развитие Леонарда Эйлера как крупного ученого и просветителя того времени. Большинство источников о биографии и деятельности Леонарда Эйлера были переведены, в основном, с немецкого на английский и французские языки, в частности, и на русский. В виду целесообразности первая глава представлена на английском языке, дабы быть ближе к первоисточникам.
Вторая глава повествует о существенном вкладе таланта Леонарда Эйлера в развитие алгебры XVIII столетия. В ней представлена работа, связанная с доказательством основной теоремы алгебры и методах приближенных решений алгебраических уравнений п-ой степени.
Третья глава посвящена выдающимся достижениям Леонарда Эйлера в области геометрии и тригонометрии. В нее включены работы по исследованию поверхностей второго и высших порядков, а так же специальных плоских кривых и геодезических линий. Леонард Эйлер написал первый систематизированный учебник по геометрии, общепризнанный классическим. Это второй том «Введения в анализ бесконечно малых». В данном учебнике развит единый метод для классификации плоских алгебраических кривых любого порядка и систематизированы практически все общие методы исследования таких кривых.
Четвертая глава повествует о крупнейших открытиях в теории диофантовых уравнений, занимавшей своей сложностью и изяществом прогрессивные умы математиков многих столетий. В XVIII веке Л. Эйлер, работая в Петербургской академии наук, издал большую часть своих работ по теории чисел и диофантовых уравнений. Он обобщил основной результат ферма для случая делимости на составные числа, создал общую теорию так называемых степенных вычетов, получил очень большое число разнообразных результатов о представимости чисел в виде форм определенного типа, исследовал ряд систем неопределенных уравнений и получил интересные результаты о разбиение чисел на слагаемые. У Эйлера мы впервые встречаемся с идеей применения методов математического анализа к задачам теории чисел. Рассмотрение бесконечных рядов и произведений являлось у Эйлера действенным орудием для получения теоретико-числовых результатов.
Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков 18 столетия Леонард Эйлер, чья жизнь и работа стимулируют творчество многие поколения математиков.
Pic. 1 (Poster of Eule)
Финансовая деятельность Ордена и его стремления к
самостоятельным действиям, независимым от светских и духовных феодалов
За тамплиерами закрепилась репутация «банкиров Запада». Их финансовый успех даже представляют как одну из причин гибели ордена: богатство достаточно хорошо сочетается с корыстолюбием и высокомерием, вот только с религиозным служением все это находится в противоречии.[54]
Хотя автор данной работы считает, что в интересах выполнения свое ...
Предпосылки образования Чехословацкой Республики
Активизации освободительной борьбы чехов и словаков способствовала Февральская революция в России. Обстановка в Австро-Венгрии к этому времени заметно обострилась. Усилилась дезорганизация экономики, в первой половине 1917г. оживилось забастовочное движение. Внешнеполитический и внутренний кризис монархии углубился. Под влиянием революц ...
Гангутское морское сражение (1714 г.)
После победы зимой 1714 г. у Лапполо можно было развивать действия на море. К 1714 г. русский флот представлял большую силу, способную потягаться с шведским флотом. Обстановка в Западной Европе несколько улучшилась для России. Между державами-победительницами — Англией, Голландией и Австрией — начались серьезные трения после Утрехтского ...