Историческая информация » Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел » Развитие аналитической геометрии, начиная с систематического исследования высших порядков

Развитие аналитической геометрии, начиная с систематического исследования высших порядков
Страница 2

yy=a+b x+g x x и yy=a -b x x.

За этим следуют совершенно новые и оригинальные вещи. Именно, исходя из последнего уравнения (чертит он здесь лишь эллипсы), Эйлер посредством вычислений определяет другую пару сопряженных диаметров, для одного из которых дан угол с осью абсцисс. Эйлер вычисляет тангенс угла второго диаметра с осью абсцисс, тангенс угла между обоими новыми сопряженными диаметрами и, наконец, длины последних. В этих нелегких выкладках Эйлер применяет для обозначения функций известных углов, как специальные буквы, так и их современные символы. В качестве следствий здесь получаются теоремы о постоянстве параллелограммов и сумм квадратов, построенных на сопряженных диаметрах, а также теорема о произведении отрезков касательных, лежащих между двумя фиксированными параллельными касательными.

Теперь Эйлеру нужно лишь выставить требование взаимной перпендикулярности новой пары диаметров, чтобы получить тем самым положение и длины главных осей. При этом он подчеркивает, что решение здесь существует всегда. В присоединенном к этому тому «Приложении о поверхностях» Эйлер действительно преобразовал уравнение

аасс = auu+ 2b tu+g t t

в прямоугольной системе координат к главным осям. Аналитическая геометрия конических сечений впервые была поставлена на собственные ноги.

В конце рассматриваемой главы определяются действительные фокусы. Эйлер определяет их, отыскивая на большой оси точки, для которых радиусы-векторы точек кривых могут быть рационально выражены через их координаты.

Следующая, шестая глава трактовала о классификации линий второго порядка. Эйлер различает здесь кривые только в зависимости от значения коэффициента g в уравнении

уу = a + b х + g х х.

Затем он берет для эллипса уравнение относительно центра

и, в частности, выводит из него фокальные свойства эллипса и его касательной. Далее, он вводит новые величины

(полупараметр) и d=a — Ö(aa-bb)

(расстояние фокуса от вершины). Тогда уравнение эллипса относительно вершины принимает вид

Теперь Эйлер переходит от эллипса к параболе, полагая 2d = c, благодаря чему а и b становятся бесконечно большими. Насколько возможно, свойства параболы он выводит, исходя из понимания ее как бесконечно растянутого эллипса. Вслед за тем он переходит к уравнению гиперболы

у у = a + g x x

и устанавливает, что сопряженная ось в этом случае мнимая. Однако, чтобы сохранить сходство с уравнением эллипса, он полагает мнимую ось равной , в результате чего уравнение гиперболы приобретает вид

О свойствах гиперболы он умозаключает, представляя себе, что в соответствующих случаях для эллипса bb заменено через -bb. Установив для угла, образуемого касательной с большой осью, скажем, угла w, общее уравнение

tang w=

Эйлер находит асимптоты, полагая х=¥ (т.е. ), что дает для тангенса угла асимптоты с осью значение . При выводе различных свойств асимптот он определенно отмечает, что они сохраняют силу, когда, например, секущая прямая пересекает не одну ветвь гиперболы, а обе. Само собою, разумеется, Эйлеру было известно также определение асимптот с помощью разложения на множители совокупности старших членов уравнения кривой. Однако этот прием он применил лишь в последующих главах, вообще посвященных бесконечным ветвям высших кривых. В главе VII Эйлер делает замечание, что если bb больше, чем 4ag, то общее уравнение

a y y+b x y+g x x +d y +e x +z=0

представляет собой гиперболу. Вообще же у Эйлера отсутствовали еще общие критерии классификации кривых по их коэффициентам. [11]

Страницы: 1 2 


Русская армия 1812 года.
Как же была устроена армия, нанесшая тяжелое поражение доселе непобедимым французам? Русская армия в те времена была одной из лучших в мире. Она имела большой опыт войн с сильным противником, прошла суровую школу военного искусства под руководством таких выдающихся военачальников, как Петр 1, Румянцев, Суворов и другие. Армия делилась ...

Итоги первого этапа войны
Первый период Великой Отечественной войны, длившийся с 22 июня 1941 г. по 18 ноября 1942 г. (до перехода советских войск в контрнаступление под Сталинградом), имел большое историческое значение. Советский Союз выдержал военный удар такой силы, какой не смогла бы выдержать ни одна другая страна. Мужество и героизм советских людей сорвали ...

Мирный договор
Мирный договор был подписан 30 марта 1856 года в Париже на международном конгрессе с участием всех воевавших держав, а также Австрии и Пруссии. Председательствовал на конгрессе глава французской делегации министр иностранных дел Франции граф Александр Валевский двоюродный брат Наполеона III. Русскую делегацию возглавил граф А. Ф. Орлов ...