Историческая информация » Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел » Развитие аналитической геометрии, начиная с систематического исследования высших порядков

Развитие аналитической геометрии, начиная с систематического исследования высших порядков
Страница 1

В рассматриваемое время координатный метод употребляли преимущественно в дифференциально-геометрических исследованиях, или же, если подчеркивали значение метода Декарта, применяли его к высшим алгебраическим кривым. Последним занялся, в частности, де-Гюа-де-Мальв в небольшой книге «Применения анализа Декарта», которая была богаче новыми идеями, чем аналитическими выводами. Эти исследования более высокого порядка могли быть с таким же успехом приложены к коническим сечениям, которые иногда и привлекались в качестве примеров. Так, например, де-Гюа впервые дал для конического сечения

nyy+rxy+mxx+ay+bx+cc=0

(т, п, r обозначают числа, но а, b, с — отрезки) уравнение, определяющее координаты центра, в виде

Cледует упомянуть, что для де-Гюа было вполне привычным представление о кривой, распадающейся на несколько других, т. е. кривой, уравнение которой в левой части разлагается на ряд множителей. Он даже называл уравнение у3= х3 уравнением трех прямых, две из которых мнимые.

Сочинение Г. Крамера «Введение в анализ алгебраических кривых», опиравшееся во многих отношениях на работу де-Гюа и изданное десятью годами позднее, также ограничивалось высшими алгебраическими кривыми. Тем временем уже появился второй том «Введения в анализ» (1748) Эйлера, поднявший на существенно более высокую ступень и аналитическую теорию конических сечений. Эйлер целиком еще держался декартова понятия о координатах, между тем как Крамер, на сочинение которого книга Эйлера повлиять уже не могла, впервые равноправно определил две координаты и последовательно ввел ось ординат. Правда, в преобразованиях координат у Крамера ось ординат все еще играла несколько беспомощную роль. Со времен Витта преобразования координат употреблялись всеми математиками и нередко принимали даже довольно сложные формы, ибо тогда часто переходили от одной косоугольной системы к другой, с новым началом и отличным координатным углом, не пользуясь при этом тригонометрическими функциями. Впервые последними воспользовался для этой цели Эйлер во «Введении в анализ». Он еще часто обозначал синус или косинус угла посредством какой-либо специальной буквы. Но у него имелись уже и такие формулы преобразования прямоугольной системы:

t = x cos • q - у sin • q, u = x sin • q + y cos • q.

Во второй главе II тома «Введения в анализ», посвященной преобразованию координат, Эйлер коротко останавливается на вопросе о прямой. Сначала он приводит ее уравнение в виде a u+b t+b = 0, но затем, желая определить положение прямой, записывает его в виде a x+b y - a= 0. Он не разбирает различные возможные комбинации знаков a и b и упоминает лишь случаи a = 0, b = 0 и a = а = 0, не касаясь, однако, случая b=a=0. Все эти возможности были впервые разобраны, по крайней мере, в форме беглых замечаний, в книге Риккати-Саладини.

В пятой главе II тома «Введения в анализ» речь идет об общих свойствах всех конических сечений, т. е. свойствах, которые можно вывести из общего уравнения второй степени. Хотя вначале Эйлер определенно заявляет, что из одного принципа вывести все свойства конических сечений нельзя и что одни получаются из способа образования этих линий на конусе, а другие из приемов их описания, но здесь он желает опираться только на уравнение. Последнее он записывает в виде

причем координатный угол в зависимости от обстоятельств берется то прямым, то отличным от прямого. Действуя вполне в духе Ньютона и Стерлинга, Эйлер в первую очередь выводит из этого уравнения на основании теоремы о сумме и произведении корней обычные свойства диаметров, секущих и касательных. К числу извлекаемых им следствий принадлежит также теорема, что коническое сечение можно рассматривать как геометрическое место к четырем прямым. Далее он определяет уравнение диаметра, делящего пополам хорды, параллельные ординатам, вначале в прямоугольной системе, а затем для того же конического сечения в системе с прежними осью абсцисс и началом, но с косоугольно расположенными ординатами. Точка пересечения обоих диаметров дает центр конического сечения, координаты которого не зависят от угла, образуемого направлением ординат с осью абсцисс. Затем Эйлер устанавливает отнесенные к «сопряженным диаметрам» уравнения

Страницы: 1 2


Дмитрий Иванович (Байда) Вишневецкий
Князь Дмитрий Вишневецкий вошел в историю под прозванием казацкого атамана Байды - грозы татар и турок. Одно его имя повергало их в мистический ужас. Михаил Грушевский назвал его "историческим патроном Запорожской Сечи", который "блестящим, искрящимся метеором перелетел сквозь украинскую жизнь". Знаменитый воин, люби ...

Поворот в тактической линии. Восстановление потребительской кооперации
Двадцатые годы занимают особое место в послеоктябрьской истории страны. В этот период, после провала попытки разрушить «штурмовым» методом сложившиеся производственные отношения и навязать народам России коммунистический строй, реальность «пришествия» которого не была ни научно, ни экспериментально доказана, В.И. Ленин и поддерживающая ...

Россия на рубеже XVI-XVIIвв. Эпоха смуты.
1598-1605гг - правление Бориса Годунова 1605-1606гг - правление Лжедмитрия I 1606-1610гг - правление Василия Шуйского 1611г - первое ополчение 1612г - второе ополчение 1617г - Столбовский мир со Швецией 1618г - Деулинское перемирие с Польшей Предпосылки Смуты: 1. Хозяйственный кризис конца XVIв и убыль тяглового населения сопрово ...