Поверхности второго и высших порядков
Страница 2

За этим следовала специальная глава, в которой выводились уравнения, преобразующие одну прямоугольную систему пространственных координат в другую. Так как Эйлер ввел шесть определяющих преобразование величин, то его формулы оказались несимметричными. В той же связи Эйлер ввел здесь понятие «порядка» поверхности и сформулировал теорему, что порядок плоской кривой, возникающей при сечении поверхности, не выше порядка самой поверхности; попутно он отметил также возможность распадения линии пересечения на несколько других. В качестве примера Эйлер привел уравнение плоскости

α x + β y + γ z = a,

для которой, между прочим, определил углы с координатными плоскостями.

После всего этого Эйлер впервые предпринял исследование общего уравнения второй степени с тремя координатами. В первую очередь он рассмотрел совокупность высших членов уравнения, как характеризующую «асимптотический конус», и сообщил условия его действительности, а также его вырождения. Затем, не произведя, впрочем, всех должных выкладок, он правдоподобным образом показывает, что общее уравнение может быть приведено к виду

Арр + Вqq + Crr + К = 0.

Из этого уравнения Эйлер получает эллипсоид («elliptoeides»), однополостный и двухполостный гиперболоиды («superficies еlliptico-hyperbolica» и «superficies hyperbolico-nyperbolica»). Эллиптический и гиперболический параболоиды («superficies elliptico-parabolica» и «superficies parabolico-hyperbolica») выражены здесь уравнением

Арр ± Bqq = ar.

Эйлер упоминает еще параболический цилиндр

Арр = аq

и делает несколько беглых замечаний о том, как можно определить род поверхности по какому-нибудь данному уравнению. Рассуждения Эйлера, особенно в части, касающейся доказательств, были еще весьма несовершенны, но предложенная им классификация легла в основу позднейших исследований.

Еще в начале «Приложения» Эйлер заявил, что не намерен рассматривать подобно Клеро кривые двоякой кривизны отдельно, ибо они тесно связаны с природой поверхностей. Свое «Приложение» он поэтому закончил главой о пересечении двух поверхностей, вообще говоря, представляющем пространственную кривую. Он показал, как при исключении одной из переменных возникают уравнения проекций этой кривой на координатные плоскости, и применил это также к пересечению поверхности с плоскостью. Для примера он привел пересечение плоскости с шаром, причем нашел условия их соприкосновения. Далее, он определил для шара сначала конус вращения, касающийся его вдоль некоторой окружности, а потом эллиптический конус, касающийся шара в двух точках. Относительно последнего случая он заметил, что хотя кривая пересечения имеет лишь две действительные точки, но ее проекция на некоторую координатную плоскость действительна. При определении касательной плоскости к поверхности Эйлер пользовался лишь приемом Клеро, не устанавливая общего уравнения этой плоскости, которое потребовало бы «анализа бесконечного», между тем как «Введение в анализ» должно было лишь «открыть к нему путь». В самом конце Эйлер разъяснил, как найти две поверхности, пересекающиеся по данной плоской кривой.[11]

Страницы: 1 2 


Введение.
(Краткая биография Ярослава Мудрого) Ярослав Мудрый (ок. 978-02.02.1054гг.) – выдающийся государственный деятель и полководец Киевской Руси, великий князь киевский (1019-1054гг.). Ярослав был сыном Владимира Великого и польской княжны Рогнеды. Еще при жизни отец перевел его из Ростова на княжение в Новгород, чем вызвал недовольство Свя ...

Внешние и внутренние факторы социального развития Востока
К началу XVI в. общественный строй стран Востока, несмотря на существенные различия социальных порядков по странам и континентам, имел много сходных черт. Если на Западе частное лицо (феодал) или особый институт (церковь, город) могли при определенных обстоятельствах противостоять государству и его суверену, то на Востоке это было практ ...

Политика Александра на завоёванных территориях. Её эволюция.
В этой главе мы рассмотрим лишь один (наиболее важный, как нам представляется) аспект политики Александра на завоёванных территориях. Это меры, предпринимаемые для создание социальной опоры власти македонского царя. Мы не рассматриваем здесь религиозную политику Александра, хотя она и имела важное значение в деле укрепления власти макед ...