Мощным побудительным стимулом явилась для него так называемая теорема Ферма о сравнении атº1 (mod p), значение которой он оценил сразу. Эйлеру принадлежат два доказательства этой теоремы, покоящихся на разных основаниях. Первое [Comm. Ac. Petr., 1736(1741)] использовало тот факт, что все биномиальные коэффициенты, соответствующие показателю степени р, делятся на р, и было проведено с помощью индукции. Второе и третье доказательства появились в Nov. Comm. Ac. Petr. за 1758/59 (1761) и 1760/61 (1763).

В последней статье Эйлер обобщил теорему Ферма, установив (в обозначениях, ведущих свое происхождение от Гаусса), что

аj(m) º 1 (mod m),

где j(т) есть число чисел, взаимно простых с т и меньших т. Встречающееся здесь число j(т), которое по предложению Гаусса называют теперь «функцией Эйлера», последний представил в той же работе в виде

где р, р’, . — простые делители числа т. Если т само есть простое число, то числа 1, 2, 3, ., (р - 1) будут с ним взаимно простыми, и получается важная теорема, высказанная Дж. Вильсоном и опубликованная в 1770 Варингом в его «Алгебраических размышлениях». Теорема эта гласит, что величина 1, 2, 3 . (р - 1)+1 делится без остатка на р, где р, как и всюду здесь, — простое число. Эта теорема, как и теорема Ферма, заключается в установленном Лагранжем [Mem. Ac. Bed., 1771 (1773)] общем сравнении

xp-l - l=(x + l)(x + 2) .(x+p - 1) (mod р)

при x = 0. Она была также доказана Эйлером («Аналитические сочинения», I, 1783) и Гауссом («Арифметические исследования», 1801). Упрощенное доказательство теоремы Ферма дал еще И. Г. Ламберт, охотно занимавшийся и теорией чисел (Nov. Acta Erud., 1769).

§4.3. Вычеты

К важнейшим достижениям в исследовании целых чисел Эйлера привели старания доказать другую, упоминавшуюся уже, теорему Ферма о том, что всякое простое число вида 4п + 1 разбивается на сумму двух квадратов. Эйлер многократно и с различных сторон подходил к этой теореме и при этом нашел ряд интересных предложений. Окончательно доказать ее Эйлеру удалось лишь в 1749 [Nov. Comm. Ac. Petr., 1754/55 (1760)], воспользовавшись тем ходом мыслей, которым он шел в первом доказательстве теоремы о сравнении ат = 1 (mod р). Это привело его к рассмотрению остатков от деления квадратов 12, 22, 32, ., (р - 1)2 на простое число р. Эйлер немедленно увидел, что при этом получаются «многие замечательные свойства, изучение которых проливает немало света на природу чисел». Таким образом, он впервые поставил вопрос о квадратичных вычетах и понял их значение. Здесь уже встречаются и термины: вычеты (residua) и невычеты, (non residua). В том же месте и в позднейших статьях, в которых он занялся степенными вычетами вообще и рассмотрел полные и неполные системы вычетов, он установил важнейшие относящиеся к ним теоремы. В Nov. Comm. Ac. Petr., 1773 (1774) он ввел также понятие и слово «первообразный корень». Поэтому Эйлера справедливо называют творцом теории степенных вычетов, тем более что ему принадлежит и открытие «закона взаимности» квадратичных вычетов, который Гаусс называл «основной теоремой» (theorema fundamentale) и который до недавнего времени приписывали Лежандру. Закон взаимности Эйлер установил еще в 1772, а опубликован он был, правда, без доказательства, в 1783 в первом томе «Аналитических сочинений».


Выводы.
Таким образом, можно сделать вывод, что в целом правление Ярослава Мудрого обусловило подъём Киевской Руси. По сути, период его правления был «пиком» её развития, когда Русь стала одним из сильнейших мировых государств, и её «приняли» в Византии, Франции, скандинавских странах, и многих других странах Европы. Европейские монархи могли г ...

Социально-экономическое развитие России в первой четверти XIX в. Реформы 1801–1811 гг
Начало XIX в. ознаменовалось дворцовым переворотом. В ночь с 11 на 12 марта 1801 г. император Павел I был задушен, а его сын, участник заговора, вступил на престол. В своем манифесте Александр I объявил народу, что его отец скончался от апоплексического удара. В июле 1801 г. император создал и возглавил Негласный комитет, в который ...

Ключевые философы, литераторы и деятели искусства эпохи Возрождения из различных государств Европы.
Наивысший расцвет искусства Возрождения пришёлся на первую четверть XVI века, которая получила название «Высокое возрождение». Работы Леонардо да Винчи (1452—1519), Рафаэля Санти (1483—1520), Микеланджело Буонаротти (1475—1564), Джорджоне (1476—1510), Тициана (1477—1576), Антонио Корреджо (1489—1534) составляют золотой фонд европейского ...