Историческая информация » Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел » Числовые приближенные методы решения уравнений. Метод рекуррентных рядов

Числовые приближенные методы решения уравнений. Метод рекуррентных рядов
Страница 1

Другим приближенным методом, который покоился на совсем иной основе, чем способ Ньютона, и не нуждался в определении границ корней, был метод рекуррентных рядов, сообщенный Даниилом Бернулли в Comm. Ac. Petr., 1728 (1732). Возникновение этого метода было, впрочем, связано с замечаниями Ньютона о применении к решению уравнений сумм степеней корней. Способ Бернулли заключался в следующем. Пусть требуется решить уравнение

и пусть выбраны п произвольных чисел Р1, Р2, Р3, ., Рп. Если теперь определить Рп+1, Рп+2, . рекуррентным законом

(т=1, 2, 3, .), то отношение с возрастанием т приближается к наибольшему по абсолютной величине корню уравнения. Даниил Бернулли высказал эту теорему без доказательства. [12] Эйлер в 17-й главе «Введения» (1748) тщательно разобрал этот метод и привел отсутствовавший вывод.

Так как всякий рекуррентный ряд получается из развертывания рациональной дроби, то пусть эта дробь будет равна

откуда получается рекуррентный ряд

А+Вz+Cz2+Dz3+Ez4+Fz5+ и т.д.

его коэффициенты А, В, С, D, и т.д. определятся так:

A=a, B=aA+b, C=aB+bA+c,

D=aC+bB+gA+d, E=aD+bC+gB+dA+e и т.д.

Общий же член, т.е. коэффициент степени zn, найдется из разложения данной дроби на простые дроби, знаменатели коих являются множителями знаменателя

1-az-bz2-gz3- и т.д.

Вид общего члена зависит, главным образом, от свойств простых множителей знаменателя, будут ли они действительными или мнимыми, а так же от того, будут ли они отличны друг от друга или два и более будут одинаковыми. Для последовательного рассмотрения этих различных случаев положим вначале, что все простые множители знаменателя действительны и не равны между собой. Пусть все простые множители знаменателя будут

(1-pz)(1-qz)(1-rz)(1-sz) и т.д.

и тогда данная дробь разложится на простые дроби.

Когда они найдены, то общий член рекуррентного ряда будет равен

примем его равным Pzn; значит, P будет коэффициентом степени zn; у следующих же членов пусть коэффициенты будут Q, R, и т.д., так что рекуррентный ряд будет

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+Rzn+2+ и т.д.

Теперь положим, что п представляет чрезвычайно большое число, т.е. что рекуррентный ряд продолжен весьма далеко; так как степени неравных чисел тем более отличаются друг от друга, чем они больше, тем между степенями и т.д. будет такое различие, что степень, соответствующая наибольшему из чисел р, q, r и т.д. между собой не равны, то пусть p будет наибольшим среди них. Тогда, если п будет числом бесконечно большим, будем иметь

если же п будет числом не бесконечно, а лишь очень большим, то только приближенно будет Подобным образом будет и, следовательно.

Страницы: 1 2 3


Общая характеристика внешней политики Ярослава Мудрого
Период княжения Ярослава Мудрого отмечен новым прорывом в истории Киевского государства. В эпоху правления Ярослава Русь «вышла на мировую арену», как одно из самых сильных государств этого периода. В области ведения международных дел Ярослав предпочитал дипломатию войнам. Так, он знаменит своими династическими браками со многими правит ...

Интеллектуальное искажение источника
Интеллектуальное искажение подлинного исторического источника производится в том случае, когда он исправляется или сокращается таким образом, чтобы дополнить реально отраженные в нем факты прошлого не существовавшими деталями или же изменить его действительный смысл. Неполная аутентичность источника представляет собой сокращение текста ...

Влияние христианства на жизнь людей
Христианизация Древней Руси протекала противоречиво. Если киевская община, подчиняясь авторитету княжеской власти, приняла новую веру безропотно, то другие регионы, например, Новгород, приходилось крестить огнем и мечом. Язычество еще долго сохраняло свои позиции, особенно в сознании людей. Православная церковь, приспосабливаясь к местн ...