Влияние Леонарда Эйлера на развитие теории чисел
Страница 1

С конца XVII до тридцатых годов XVIII столетия мы не можем назвать какого-либо замечательного теоретико-числового открытия. Математики были слишком заняты разработкой возникших недавно исчисления бесконечно малых и аналитической геометрии. Только Эйлер, распространивший свою огромную активность на все области математики, уделил внимание этой отвлеченнейшей ее ветви и даже с особенной любовью занимался ею на протяжении всей жизни. Из многочисленных работ Эйлера мы, разумеется, можем выделить только важнейшие результаты и методы, не вдаваясь в частности. https://prava112-j.com единая база гибдд проверка водительских прав.

§4.1. Целочисленное решение неопределенных уравнений

В целом ряде статей Эйлер занялся целочисленным решением неопределенных уравнений. Уже в раннем периоде своей деятельности он нашел упомянутый выше способ решений уравнений первой степени с двумя неизвестными [Comm. Ac. Petr., 1734/35 (1740)], который мы встретили у Ролля. В «Полном введении в алгебру» (1768/69) Эйлер применил тот же прием к линейным уравнениям с несколькими неизвестными. К последним он возвратился затем в статье, опубликованной уже после его смерти во втором томе «Аналитических сочинений» (Opuscula analytica, 1785). Лагранж в Mem. Ac. BerL, 1768 (1770) присоединил к методу Эйлера еще свой известный способ цепных дробей, весьма близкий, впрочем, к способу Ваше. Еще ранее Эйлер показал [Comm. Ac. Petr., 1732/33 (1738)], как получается бесконечно много целочисленных решений уравнения ах2 + bx + с =y2, если известно одно такое решение. Несложное преобразование этого уравнения немедленно приводит задачу к более простой, именно к определению целочисленных решений уравнения A+By2=z2. В Nov. Comm. Ac. Petr. за 1762/63 (1764) и 1773 (1774) Эйлер сумел также дать правила нахождения одного такого решения при положительном В. Однако его исследования вскоре были отодвинуты на задний план результатами Лагранжа, который привел к виду А+Вt2= и2 общее уравнение

Ах2 + bxy + су2 +dx +cy +f=0

и в Mem. Ac. Berl., 1769 (1771) подробнейшим образом рассмотрел вопрос о решении первого уравнения. Прием Лагранжа заключался в том, что посредством подходящих преобразований он постепенно уменьшал коэффициенты, пока один из них не становился равным единице, после чего решение сводилось к решению задачи Ферма. Эйлер все же вернулся впоследствии к общей проблеме снова и сообщил два метода, позволявших по одному известному решению найти бесконечно много решений. Вместе с тем он нашел условия, при которых рациональные решения переходят в целочисленные [см. Nov. Comm. Ac. Petr., 1773 (1774) и «Аналитические сочинения», т. I, 1783]. Эйлер подошел к аналогичной задаче и для уравнений третьей и четвертой степеней. Последние исследования, в которых предшественником Эйлера был еще Ферма, рассмотревший две частные формы четвертой степени, относились к 1780, но появились много времени спустя после смерти Эйлера [например, в т. XI Mem. Petersb. (1830)], когда они представляли уже почти лишь исторический интерес.

В круг своих занятий Эйлер включил также вопрос о целочисленном решении систем диофантовых уравнений высших степеней и систем более чем с двумя неизвестными, которому посвятил целый ряд статей. Однако они не оказали влияния на последующее развитие теории чисел, ибо не давали общих методов и содержали только искусные приемы в частных случаях.

Страницы: 1 2


История
Современный собор возведён на месте деревянного собора, построенного в 1753—1756 годах в слободе Измайловского полка по проекту неизвестного архитектора. Строительство осуществлялось на личные средства императора Николая I в 1828—1835 годах по проекту архитектора В. П. Стасова. Собор был торжественно открыт 25 мая 1835 года. На то время ...

Основные причины крестовых походов
Кресто́вые похо́ды — серия военных походов западноевропейских рыцарей, направленных против «неверных» — мусульман, язычников, православных государств и различных еретических движений. Целью первых крестовых походов было освобождение Палестины, в первую очередь Иерусалима (с Гробом Господним), от турок-сельджуков, однако поздне ...

Первый пятилетний план
За годы первой пятилетки(1928/1929- 1932/ 1933гг) СССР должен был превратиться в индустриально- аграрную страну. За 5 лет производство электроэнергии должно было возрасти почти в 4,5 раза. В действие планировалось ввести 42 новые электростанции. Добыча каменного угля должна была увеличиться в 2 раза По ходу выполнения плана эти показате ...