Заслуги Эйлера в
преобразовании и дальнейших успехах тригонометрииСтраница 3
Среди прочего материала здесь имелись все формулы для половинных углов, правда, без сокращенных обозначений полусумм сторон и углов, затем четыре аналогии Непера—Бригса, употребление вспомогательного угла в теореме косинусов, причем последняя приводилась еще в новой форме:
cos a=
сообщалась и формула, полярная с приведенной.
Прибавим, что вслед за этой статьей Эйлер в том же томе Mem. Ac. Berl. поместил работу, подробно излагавшую тригонометрию на поверхности сфероида, особо учитывая вопросы, связанные с измерением земли. Аналогичные исследования были произведены позднее дю-Сежуром [Mem. Ac. Paris., 1778 (1781)].
Во второй статье по сферической тригонометрии [Comm. Ac. Petr., 1779 (1782)] Эйлер принял для построения системы ее формул элементарную основу. Он исходил здесь из трехгранника, который пересекал соответствующими плоскостями, с тем, чтобы после применить теоремы плоской тригонометрии (подобно Копернику). Он вывел, таким образом, теорему синусов, теорему косинусов для сторон и новую формулу, связывающую пять элементов:
cos A sin с = cos a sin b — sin a cos b cos С,
отметив, что эти три формулы содержат в себе всю сферическую тригонометрию. Полученное здесь третье уравнение Эйлер подверг неоднократным преобразованиям. Он вывел из него так называемую формулу котангенсов, теорему косинусов для углов и, с помощью теоремы синусов, полярную с ней формулу. Лишь после этого он ввел полярный треугольник и объяснил его способ применения, привел, частично выведя их по-новому, логарифмические формулы и с полным правом заявил, что его статья дает полное (можем прибавить: первое полное) изложение системы сферической тригонометрии. [11]
Письмо как средство письменной коммуникации
В современном мире с его бурно развивающимися новыми электронными средствами коммуникации (факс, e-mail, Интернет) письмо, отправленное по почте или с курьером, при всей своей традиционности не утратило определенной значимости. Прежде всего, письмо, приходящее в запечатанном конверте, предназначено персонально лицу, указанному в качеств ...
Разложение на простые
множители
Нужно еще добавить кое-что о разложении чисел на множители и о связанных с этим теоремах о простых числах. Уже Валлис в своем «Рассуждении о соединениях» (Discourse of Combinations, 1685) высказал теорему, гласившую, что всякое число можно разложить на простые множители единственным образом. Он выразил словесно важную формулу, согласно ...
Япония в период раздробленности и гражданских войн
Япония начала Нового времени унаследовала от позднес-редневекового сёгуната Асикага (1467-1568) период раздроб ленности и гражданских войн, получивший название «эпохи воюющих провинций». Он ознаменовался борьбой вассалов сегуна против него и между собой. Сегуны из дома Асикага утратили контроль над столицей Киото, где образовалось сильн ...
